697 research outputs found

    The Post-Newtonian Approximation of the Rigidly Rotating Disc of Dust to Arbitrary Order

    Full text link
    Using the analytic, global solution for the rigidly rotating disc of dust as a starting point, an iteration scheme is presented for the calculation of an arbitrary coefficient in the post-Newtonian (PN) approximation of this solution. The coefficients were explicitly calculated up to the 12th PN level and are listed in this paper up to the 4th PN level. The convergence of the series is discussed and the approximation is found to be reliable even in highly relativistic cases. Finally, the ergospheres are calculated at increasing orders of the approximation and for increasingly relativistic situations.Comment: 19 pages, 2 tables, 4 figures Accepted for publication in Phys. Rev.

    Λb→pl−νˉ\Lambda_b \to p l^- \bar{\nu} form factors from lattice QCD with static b quarks

    Full text link
    We present a lattice QCD calculation of form factors for the decay Λb→pμ−νˉ\Lambda_b \to p \mu^- \bar{\nu}, which is a promising channel for determining the CKM matrix element ∣Vub∣|V_{ub}| at the Large Hadron Collider. In this initial study we work in the limit of static b quarks, where the number of independent form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large volume. Using our form factor results, we calculate the Λb→pμ−νˉ\Lambda_b \to p \mu^- \bar{\nu} differential decay rate in the range 14GeV2≤q2≤qmax214 GeV^2 \leq q^2 \leq q^2_{max}, and obtain the integral ∫14GeV2qmax2[dΓ/dq2]dq2/∣Vub∣2=15.3±4.2ps−1\int_{14 GeV^2}^{q^2_{max}} [d\Gamma/dq^2] dq^2 / |V_{ub}|^2 = 15.3 \pm 4.2 ps^{-1}. Combined with future experimental data, this will give a novel determination of ∣Vub∣|V_{ub}| with about 15\% theoretical uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.Comment: 14 pages, 5 figure

    Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables

    Full text link
    During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-the-art image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest.Comment: 6 pages, 11 figures, presented at EUCAS 201

    Aeroelastic Gust Response of an Aircraft Using a Prescribed Velocity Method in Viscous Flows

    Get PDF

    Calculation of the heavy-hadron axial couplings g_1, g_2, and g_3 using lattice QCD

    Full text link
    In a recent letter [Phys. Rev. Lett. 108, 172003 (2012), arXiv:1109.2480] we have reported on a lattice QCD calculation of the heavy-hadron axial couplings g1g_1, g2g_2, and g3g_3. These quantities are low-energy constants of heavy-hadron chiral perturbation theory (HHχ\chiPT) and are related to the B∗BπB^*B\pi, Σb∗Σbπ\Sigma_b^*\Sigma_b\pi, and Σb(∗)Λbπ\Sigma_b^{(*)}\Lambda_b\pi couplings. In the following, we discuss important details of the calculation and give further results. To determine the axial couplings, we explicitly match the matrix elements of the axial current in QCD with the corresponding matrix elements in HHχ\chiPT. We construct the ratios of correlation functions used to calculate the matrix elements in lattice QCD, and study the contributions from excited states. We present the complete numerical results and discuss the data analysis in depth. In particular, we demonstrate the convergence of SU(4∣2)SU(4|2) HHχ\chiPT for the axial-current matrix elements at pion masses up to about 400 MeV and show the impact of the nonanalytic loop contributions. Finally, we present additional predictions for strong and radiative decay widths of charm and bottom baryons.Comment: 42 pages, 20 figures, updated calculation of Xi_b^{*0} width using mass measurement from CMS, published versio

    Dirichlet Boundary Value Problems of the Ernst Equation

    Full text link
    We demonstrate how the solution to an exterior Dirichlet boundary value problem of the axisymmetric, stationary Einstein equations can be found in terms of generalized solutions of the Backlund type. The proof that this generalization procedure is valid is given, which also proves conjectures about earlier representations of the gravitational field corresponding to rotating disks of dust in terms of Backlund type solutions.Comment: 22 pages, to appear in Phys. Rev. D, Correction of a misprint in equation (4
    • …
    corecore